Blockade of indoleamine 2,3-dioxygenase protects mice against lipopolysaccharide-induced endotoxin shock.

نویسندگان

  • In Duk Jung
  • Min-Goo Lee
  • Jeong Hyun Chang
  • Jun Sik Lee
  • Young-Il Jeong
  • Chang-Min Lee
  • Won Sun Park
  • Jin Han
  • Su-Kil Seo
  • Sang Yong Lee
  • Yeong-Min Park
چکیده

Suppression of an excessive systemic inflammatory response is a promising and potent strategy for treating endotoxic sepsis. Indoleamine 2,3-dioxygenase (IDO), which is the rate-limiting enzyme for tryptophan catabolism, may play a critical role in various inflammatory disorders. In this study, we report a critical role for IDO in the dysregulated immune response associated with endotoxin shock. We found that IDO knockout (IDO(-/-)) mice and 1-methyl-D-tryptophan-treated, endotoxin-shocked mice had decreased levels of the cytokines, TNF-alpha, IL-6, and IL-12, and enhanced levels of IL-10. Blockade of IDO is thought to promote host survival in LPS-induced endotoxin shock, yet little is known about the molecular mechanisms that regulate IDO expression during endotoxin shock. In vitro and in vivo, IDO expression was increased by exogenous IL-12, but decreased by exogenous IL-10 in dendritic cells and splenic dendritic cells. Interestingly, whereas LPS-induced IL-12 levels in serum were higher than those of IL-10, the balance between serum IL-12 and IL-10 following challenge became reversed in IDO(-/-)- or 1-methyl-D-tryptophan-treated mice. Our findings demonstrate that the detrimental immune response to endotoxin shock may occur via IDO modulation. Restoring the IL-12 and IL-10 balance by blocking IDO represents a potential strategy for sepsis treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy

Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...

متن کامل

The indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemo-radiation therapy against murine glioblastoma

BACKGROUND Indoleamine 2,3-dioxygenase (IDO) is an enzyme with immune-suppressive properties that is commonly exploited by tumors to evade immune destruction. Anti-tumor T cell responses can be initiated in solid tumors, but are immediately suppressed by compensatory upregulation of immunological checkpoints, including IDO. In addition to these known effects on the adaptive immune system, we pr...

متن کامل

NLRP3 Inflammasome Contributes to Lipopolysaccharide-induced Depressive-Like Behaviors via Indoleamine 2,3-dioxygenase Induction

Background Inflammation may play a significant role in the pathogenesis of depression, although the molecular target for the treatment of inflammation-mediated depressive symptoms remains to be elucidated. Recent studies have implicated the NLRP3 inflammasome in various psychiatric disorders, including depression. However, the underlying mechanism by which NLRP3 inflammasome activation mediates...

متن کامل

Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase.

Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase was characterized, taking advantage of its induction by bacterial lipopolysaccharide. Our results demonstrated that in various tissues, N-formylkynurenine produced by the dioxygenase from tryptophan was rapidly hydrolyzed into kynurenine by a kynurenine formamidase, but it was not further metabolized. The localization in th...

متن کامل

Histone Deacetylase Inhibitor Trichostatin A Ameliorated Endotoxin-Induced Neuroinflammation and Cognitive Dysfunction

Excessive production of cytokines by microglia may cause cognitive dysfunction and long-lasting behavioral changes. Activating the peripheral innate immune system stimulates cytokine secretion in the central nervous system, which modulates cognitive function. Histone deacetylases (HDACs) modulate cytokine synthesis and release. Trichostatin A (TSA), an HDAC inhibitor, is documented to be anti-i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 182 5  شماره 

صفحات  -

تاریخ انتشار 2009